

AI in Energy – Digitize or Disappear

July 2025

AI has significant potential in energy – companies must act to stay competitive

Key insights on AI for energy companies

- The future energy market will be dominated by companies heavily deploying AI to cope with the ever-rising complexity from renewable power, a broad range of green gases, flexibility management, and rising customer demands
- Al use cases span the entire value chain from project development to retail, enabling growth and efficiency increases key domains include machine learning as well as perception and automation systems
- Al will deliver measurable financial benefits several use cases yield cost reductions over 60%, generate productivity increases over 50% or unlock new revenue streams, leading to potential margin increases of 10-20%
- 4 Successful Al initiatives begin with pilot projects and lighthouses to demonstrate value, followed by a strategic push of market differentiators and scaling efforts across the organization
- Al accelerates industry convergence value shifts from physical energy supply to flexibility and data management, and digital companies are ready to grab it if energy companies do not do so themselves

Complexity and volatility have risen steeply with the shift to renewables – energy companies need to manage these challenges

Current trends and challenges for energy market participants

Current energy market trends

Energy supply

Rising share of intermittent, non-dispatchable energy generation adds complexity to the energy system

Time-correlated load patterns and limited flexibility across distributed energy resources affect energy system stability

Energy demand

Energy demand is accelerating with the electrification of key sectors – at the same time, rising energy costs affect competitiveness

Demand load patterns are not aligned with supply load patterns – flexibility management is required

Resulting challenges

AI offers a response to these challenges and supports the achievement of energy triad goals by reducing market volatility and complexity

Al opportunity for energy market participants

Security of supply

Optimize grid monitoring, response times and maintenance cycles, minimize outages and raise flexibility across the energy system

Affordability

Decrease energy system cost with optimal usage of available sources and maximum efficient operations in all parts of the value chain

Sustainability

Optimize energy yield from renewable sources, actively manage flexibility, integrate distributed generation sources and thereby minimize use of fossil generation capacity and gases

Comments

- In past year, there was an almost exculsive focus on ecology in the energy industry
- With current issues, the broader focus on affordability and security of supply as well has been revitalized
- However, in a RES environment, meeting all goals of the triangle at the same time cannot be achieved with existing approaches
- Al helps to effectively manage volatility and complexity and enable rising system efficiency through:
 - Process automation
 - Predictive intelligence
 - Capability of processing unlimited amounts of data
 - Managing complex fuzzy systems

Manifold AI domains offer significant benefits to energy market players – yet AI adoption in energy/utilities is lagging behind other industries

Al adoption at energy companies

Attractive AI use cases exist across the entire energy value chain and corporate functions

Selected AI use cases

Value chain	Project development and EPC	Production (power, hydrogen, sustainable fuels)	Transmission/transport, storage and distribution	Trading	Retail and consumption (management)
Use cases	Automated plant design, budgeting and scheduling	Virtual plant simulation and automated asset optimization	Sensor- and image-based inspection of grid	Autonomous, agent-based trading systems	Al-powered, integrated demand- side management
	Al-driven site search, assessment and selection	Integrated commercial asset operations	Intelligent grid fault location, isolation and service restoration	Integrated market simulation and portfolio management	Dynamic pricing, demand response and personalized tariffs
	Automated permitting and regulatory compliance	Augmented work instructions for asset repair/maintenance	Proactive grid load, voltage, flow and congestion management	Optimized automated intraday market forecasting and bidding	Smart energy product and decarbonization solution sales
	E2E supply chain planning and integration	Predictive asset maintenance	Gas pipeline leak detection and risk monitoring	Automated virtual power plant (VPP) operations	Smart home and prosumer energy management
	Predictive geological analyses (e.g., for geothermal plants)	Optimized flexibility marketing	Gas network flow optimization and nomination support	Anomaly detection in trading patterns for regulatory supervision	Al-powered automated next- level customer care
Corporate functions	Support functions (e.g., strategy, planning, M&A, IT, finance, HR)				
Use cases	Automated regulatory monitoring and compliance verification	ESG MONITORING AND PANORING	Cybersecurity risk detection and mitigation		Advanced knowledge

Exemplary use case deep dives on next pages

AI applications in project development and EPC can improve plant engineering as well as permitting, leading to faster time to revenue

Selected real-world Al applications in "Project development and EPC"

Automated plant design, budgeting and scheduling

Al domain (major)

Generative AI, machine learning, smart big data processing

Use case

- Al supports FEED studies and 3D model generation automation, intelligent clash detection and error prevention, advanced plant simulation and performance optimization, and pre-erection maintenance and repairs simulation
- This also yields predictive analytics for material and resource planning, as well as risk assessment and mitigation modeling
- · Increased engineering efficiency and design quality

Benefit

- · Cost savings through optimized design and waste reduction
- Better long-term performance and lower operation and maintenance costs

Automated permitting and regulatory compliance

Natural language processing, automation systems, smart big data processing

- Al automates requirement analysis and data extraction, as well as document draft compilation and permitting process guidance
- It also supports routine tasks ensuring fit to authorities' needs through automated use of prior experience and regulatory source monitoring, with automated notification of new or updated regulations
- Reduced effort for document creation by 30%-40%
- Decreased permitting time through less re-work
- Improved accuracy and timely regulatory compliance

In plant operations, AI can support automation and optimized asset usage, maximizing investment yield for the operator

Selected real-world Al applications in "Production (power, hydrogen, sustainable fuels)"

Integrated commercial asset operations

Al domain (major)

Machine learning, smart big data processing, automation systems

maintenance) with forecasting of weather, power production,

Al integrates technical plant data (such as performance and

Use case

 consumption and market prices
 This enables automated plant dispatch decisions, optimization of renewable energy feed-in to market, storage, and balancing markets, as well as intelligent maintenance scheduling during low-revenue periods

Benefit

- Increased commercial uptime and revenue by 5%-10%
- Additional profit uplift of 2%-3% through intelligent dispatching

Virtual plant simulation and automated asset optimization

Machine learning, smart big data processing, physical AI (partial)

- Al-powered digital twins simulate borderline plant operations (such as overpower, ramp rates and low-load conditions)
- This allows the extension of safe operational ranges beyond original guaranteed values, particularly in post-warranty phases, allowing CCPPs to be operated more flexibly and aggressively without compromising safety or reliability
- Increased ramp rate by up to 50%
- Increased power output by up to 5%
- Increased firing temperature by up to 10,000 degrees

Grid operators can exploit AI to reduce downtimes and faults, as well as inspection and maintenance cost

Selected real-world Al applications in "Transmission/transport, storage and distribution"

Intelligent grid fault location, isolation and service restoration

Al domain (major)

Perception systems, machine learning, agentic AI (partial)

Use case

 The system detects critical situations and upcoming faults instantly, autonomously initiating countermeasures to prevent outages or minimize their impact, thus enabling rapid self-healing of the power grid

Al monitors substation and grid conditions by analyzing real-time

Benefit

Reduced outage duration by 30%–50%

sensor data and recognizing patterns

- Prevented 45% of service disruptions
- · Improved grid reliability and customer satisfaction

Sensor- and image-based grid inspection

Perception systems, machine learning, physical AI (partial)

- Al uses satellite and drone images for autonomous inspection of high-voltage stations and pylons
- This facilitates the recognition of structural condition patterns, to replace manual human inspections
- Saved over 50,000 working hours and 10,000 helicopter flight hours per year (over €20 million savings annually)
- Increased inspection safety, speed and accuracy, improving operational efficiency

Energy traders need to embrace AI to manage raising market complexity and exploit opportunities from decentralization

Selected real-world Al applications in "Trading"

Autonomous, agent-based trading systems

Al domain (major)

Agentic AI (partial), machine learning, smart big data processing

Use case

Benefit

- Al optimizes trading algorithms that identify opportunities, execute trades autonomously within defined boundaries, perform automated trade validation, and learn to improve effectiveness over time
- The system analyzes historic market data and forecasts in renewable energy trading, develops AI-derived future pricing models, performs real-time data analysis and with multitude capacity of human traders, offering significant additional value
- Reduced human error, with faster trade opportunity identification and execution
- Higher (often by 5%-10%) and more stable returns, with reduced market volatility

Automated virtual power plant (VPP) operations

Machine learning, smart big data processing, automation systems

- Al performs high-volume data processing, advanced forecasting and iterative optimization to integrate numerous small decentralized energy assets (including production, controllable consumers, and storage) into one virtual system
- This enables dynamic optimization of production yield and maximizes achievable prices through intelligent market participation and realtime asset coordination
- Low-risk revenue generation from third-party assets without asset risk
- Profit optimization with Al-enhanced forecasting and dispatching
- Improved asset utilization and grid flexibility

Energy retail and customer service also exhibit huge potential to use AI to enhance customer care and differentiate offerings

Selected real-world Al applications in "Retail and consumption (management)"

Natural language processing, generative AI, smart big data processing

- Al analyzes customer energy consumption and production, CO2 footprint of supplied energy, operations, contracts, market trends and sentiments
- Based on semi-standardized automated analysis, AI helps to optimize sales strategies in terms of who, when and how to approach for offerings
- Furthermore, Al generates tailored and economically viable decarbonization solutions

Benefit

- Improved hit rate by up to 30% in customer acquisition, with a focus on those who are likely to renew their contract/switch supplier
- Higher-value offerings for customers up for decarbonization solutions
- Reduced backoffice staff in sales

Al-powered next-level customer care

Natural language processing, generative AI, automation systems

- Al is leveraged to provide an integrated web-first customer interface where customers can chat with well-trained Al bots, upload documents, seamlessly switch between mobile and laptop access
- The bot performs natural language discussions, supported by human third-level backup – the AI model is integrated into third-level support to improve learning and service quality continuously
- Reduced FTE and cost in customer support by up to 60%
- Decreased churn due to increased customer satisfaction
- Increased customer base via tailored word-of-mouth marketing

Prioritize AI use cases by value and feasibility — get the foundations done, create lighthouses, and invest in differentiators

Al use case prioritization

Value contribution

Source: Strategy& analysis.

Comments

- · Use case evaluation is typically done by
 - · Value contribution, i.e.
 - Impact on operating margin
 - Strategic benefit.
 - · Feasibility, i.e.
 - Data availability, quality and accessibility
 - Required process and system changes
 - Available expertise
 - Existance of required algorithms,
 - Regulatory constraints
- Evaluation needs to be done considering individual company's situation and objectives

In our experience, AI initiatives are best started with lighthouses to produce visible success and then grown/scaled up in the organization

Al development stages from start to scale

"START with lighthouses"

Short term (1-2 years)

Main goals

- Known, measurable and fast results
- · Pilots and lighthouses
- · Resources freed up for next-level

Main use case attributes

- Internal tasks with high automation potential
- End-user services with "wow effect"
- Internal structured data basis
- Prediction models based on experiences from other industries

"GROW with big tickets"

Medium term (3-5 years)

- Significant business value
- Collaboration across business units
- Push-and-pull culture
- Complex, multi-step core processes
- Personalized/relevant end-user experience
- Internal unstructured data basis

"SCALE with major change"

Long term (5+ years)

- Data/model efficiency
- Competitive differentiation
- Partner ecosystem
- Major business/operating model change
- Value creation with other industry sectors
- Multi-domain and multi-owner data basis

13

Increase in (TIME TO) IMPACT

Source: Strategy& analysis Strategy&

We offer energy players a comprehensive set of support offerings to start, grow and scale their AI journey

Major Strategy& Al offerings

Al proficiency and scale

Time

A systematic use case identification, evaluation and selection process is key to building a balanced AI portfolio

Deep dive on 2 Al use case identification and prioritization

1. Identification

Internal and **external** use cases along the key value levers

Existing data/Al use cases/initiatives at client organization

Long list

- Collection of use cases (existing and new) and creation of long-list
- Clustering/grouping of available data/Al domains
- Alignment of prioritization criteria
- Available data sources Stacking use cases with similar capability requirements to scale

2. Evaluation

Short list

- Prioritization of use cases by selected criteria, e.g., impact (such as EBIT and strategic benefit) and feasibility (such as data/ model/system requirements)
- Evaluation to be conducted in multiple iterations

3. Selection

Initiate prototyping

- Insight-to-action: Creation of demonstrators for selected use case(s)
- Feasibility: Evaluation of technical requirements for further development of MVP

Differentiation vs. revenue potential

Revenue vs. profitability

Inspirational vs. **scaleable** Specific vs. transferable

Tailored governance is key to effective AI scale-up – the "hub and spoke" model balances centralized control and decentralized innovation

Deep dive on 6 Al governance and organizational change

Al in Energy – Digitize or Disappear Strategy&

AI is not about technology, but a new strategic direction enabled with new capabilities

Strategic imperatives of AI for energy companies

- Start fast with AI to maintain or improve competitiveness

 AI has the potential to affect the competitive positioning of the whole energy value chain scan opportunities and leverage them quickly
- Recalibrate existing data and Al activities to stay ahead
 Refine data strategy considering Al, adjust use case target portfolio, and identify implications for overall digital/IT transformation program
- Avoid the Al dilemma (high ambitions clash with reality)

 First launch Al lighthouses delivering measurable/fast results to create traction, then focus on initiatives with high P&L impact to show value
- 4 Al increases cybersecurity risks for critical energy infrastructure invest in countermeasures, including using Al to strengthen resilience

- Foster Al culture development to implement Al successfully
 Al is usually described in technical terms but creating a culture
 that encourages employees to learn and experiment with Al tools
 is vital
- Build cross-functional Al capabilities
 Combine energy domain expertise with data science and Al engineering, investing in talent development and change management
- Unleash Al's full potential in a connected ecosystem
 Data/Al experts are scarce and algorithms complex work with external partners for speed/efficiency, yet without creating dependencies
- Build tailored Al governance to scale up Al effectively

 Define clear ownership and standards for Al initiatives the "hub and spoke" model balances centralized control and decentralized innovation

Accelerate your AI journey now and contact our experts for AI@Energy

Dr. Johannes Schneider

Partner
Energy, Utilities,
Resources

johannes.schneider@pwc.com

Dirk Niemeier

Director Energy, Utilities, Resources

dirk.niemeier@pwc.com

Matthias Schlemmer

Partner Europe Al Lead

matthias.schlemmer@pwc.com

Tobias Kasseroler

Senior Associate
Data/Al Expert

tobias.kasseroler@pwc.com