

Digital Auto Report 2021 – Volume 1

- ✓ Tenth annual Digital Auto Report, developed by Strategy& and PwC
- ✓ Global consumer survey with a focus on the US, EU and China (n = 3,000) plus new view on Japan (n = 1,000)
- ✓ Quantitative market outlook up to 2035, based on regional structural analysis
- ✓ Interviews with industry executives at OEMs and suppliers, and with leading academics and industry analysts

Volume 1

Assessing global mobility market dynamics

- Market outlook penetration of technologies and mobility types
- Customers changing mobility preferences: everything-as-a-service?
- Technology shifting gears in connected, electric, automated
- Regulation slowdown or acceleration of key policies?

Volume 2

Capturing value with new mobility business models

What to offer and how much to gain?

Volume 3

Building software-defined vehicles and services

How to build up required capabilities?

The mobility ecosystem is entering a fragmented future, with different adoption patterns and use cases by region

Executive summary – Volume 1

In the "**new normal**" world, two themes are having a major impact on auto executives' strategy with regard to connected, electric, automated and smart mobility – 1) rising market attention on decarbonization / **sustainability** and 2) competitive pressure from maturing **digital disruptors** / "new kids on the block".

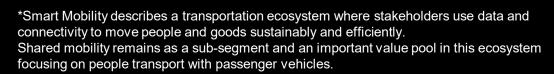
97% of Chinese consumers want to change their mobility behavior to improve their CO2 footprint – vs. 70% in Germany and 52% in the U.S. Switching to an electric vehicle is the preferred measure for achieving this goal in China and in the US, while Germans would like to do more walking / cycling.

In light of the ongoing pandemic, **demand for public transport and shared mobility remains low** – about half of the survey respondents (n = 4,000) say they use those modes less often than pre-COVID; ~30% of Germans / Americans now want to use their own vehicle more (59% in China).

Total vehicle parc projections up to 2035 see a stagnation in Europe (-0,6% p.a.) and Japan (-0,9% p.a.) – vs. marginal growth in the US (+1.3% p.a.) and stronger growth in China (+3.9% p.a.); driven by 1) growing mobility demand, 2) customer preferences for own car and 3) vehicle disposal rate.

Vehicle **connectivity** is advancing, with **50% of total parc connected in Europe** by 2025 (US by 2023, China by 2029). While OEMs are reaching a critical size with their connected service customer base, they still **struggle with reliable service delivery at scale** (over-the-air update functionality).

E-mobility is at an inflection point in Europe, driven by a strong government drive (incentives and regulations), with 27% BEV share of new car sales in 2025 – ahead of China (19%), US (6%) and Japan (5%). Slow charging infrastructure build-up will soon become the biggest growth hurdle.


Automated driving outlook is similar to previous year: in passenger transport, the **technology** will penetrate the market with a **range of specific use cases** that are difficult to scale – **L4 share of new cars at 14-15%** by 2035 in Europe / China / Japan; industrial / logistics applications likely to grow faster.

Despite consumer reluctance to share vehicles or rides during the pandemic, **smart mobility** modes beyond vehicle ownership are expected to grow in the long term. With rising number of car-subscription offerings, **shared-active** (e.g. rental, subscription) is expected to grow strongest **in Europe** (10% of total person kilometers by 2025), while **shared-passive** (e.g. ride-hailing) is expected to grow **significantly more in China** (10% vs. 1-3% in US and Europe).

Conclusion: **differentiated view on CASE strategy** and investment priorities is crucial for maintaining "**license to operate**" and creating value in automotive. (> covered in upcoming report volumes 2 and 3)

CASE themes continue to drive the automotive transformation – *Electric* currently has greatest impact"

Strategy&

Source: Strategy&

As the mobility ecosystem adjusts to the new normal, many auto players will need to reboot their CASE strategies

Consumer

Consumer spend reaching pre-COVID levels; preference for own (EV) car vs. public transport remains high

Technology

Flex-work is here to stay, pushing demand for remote tech; chip shortage unlikely to be resolved before Q4-21

Connected

With increasing digital service portfolio and functions-on-demand now available, car OS top priority for new models

Automated

Consolidation of ADAS players; OEMs review their partners; L4 people movers and robotaxis in trial mode everywhere

Regulation

EU/US decarbonization measures accelerate; rising attention on (open) data, privacy and cybersecurity

Economics

As auto toplines recover, CEO attention is shifting from liquity towards sustainable growth investments

Smart mobility

Preference for private modes has paused smart mobility growth, but cities encouraged to run new transport trials

Electric

Public incentives and growing model choice has boosted EV demand tipping point is near; infrastructure next bottleneck

Source: Strategy& Strategy&

Sustainability has become a major driver for change in auto

2021 Highlight I: Sustainability

Sustainability transformation drivers

Public perception

- Customers demand genuine ESG¹⁾ actions
- Employer brand to meet
 ESG talent expectations
- Higher transparency on social responsibility along supply chain,

e.g. for battery materials

73% ... of customers want to change their mobility behavior to lower CO₂ emissions

86% ... of employees prefer to work for firms that care about the same issues they do

Regulation

- EU taxonomy and ESG reporting standards
- Compliance system to fulfill new regulation, e.g. on cybersecurity
- Recalibration of KPI systems to ESG topics, e.g. for executive pay

41% ... Ø Zero Emission Vehicle sales required for CO₂ compliance in 2030

...barrier to ESG effectiveness is the lack of reporting standards

Net zero CO₂ pathway

- Portfolio shift towards sustainable vehicles
- Invest balance of "old" (e.g. EURO7) vs. "new" tech (e.g. cell production)
- Decarbonization of full product lifecycle including supply chain

€1T ...EU Green Deal funding, of which sustainable mobility is a central pillar

55% ...reduction in passenger car emissions by 2030 (EU Green Deal)

Capital markets

- Booming demand for ESG investment classes
- Growing relevance of top ESG rating positions
- Maturing ESG investor reporting and changing OEM equity story

€120bn

All-time high inflows in Q1/21 for EU sustainable funds²⁾ (plus 18% vs. Q1/20)

6/10 ... of best-performing funds in EU were related to ESG in Q1 2021

CASE implications

- More holistic view on ESG forces players to re-evaluate measures

 from drivetrain to cyber/data
- Connected: Emission reductions via predictive driving/analytics, but pressure on sustainable hightech production
- Autonomous: Emission efficiency via optimized driving, but growing energy consumption for data compute
- Smart: Environmental benefits from multi-mode mobility, but overall higher mobility demand as urban populations gain wealth
- Electric: Zero emission vehicles, but need for sustainable battery production and recycling

New entrants redefine the rules of the automotive value game

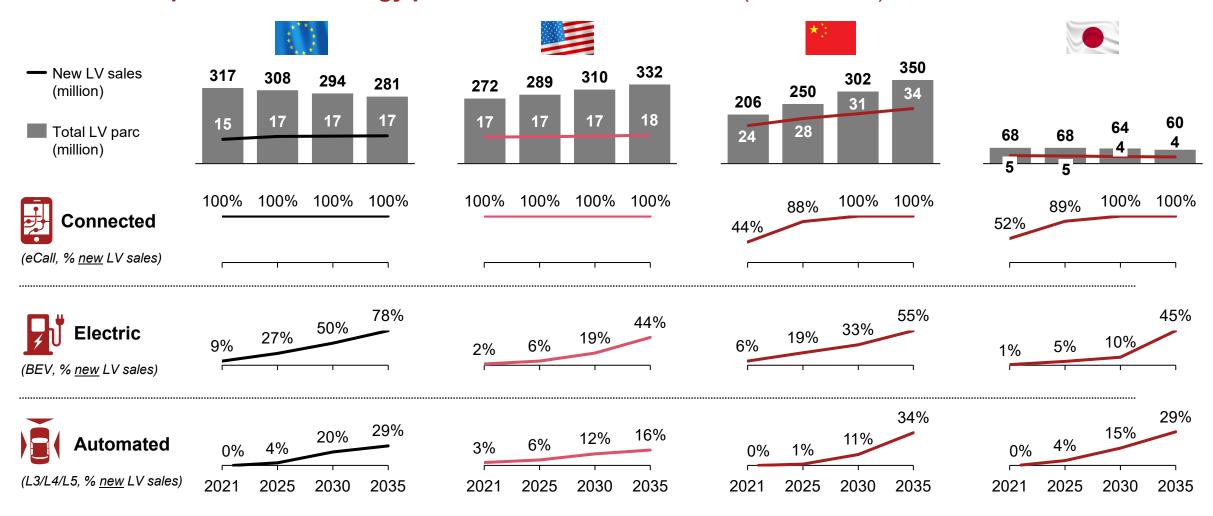
2021 Highlight II: New kids on the block

Build and run Supply Design and Retail Finance **Operate Retail mobility** infrastructure components vehicles build vehicles vehicles fleets and services **Traditional OEMs New Kids** (charging, vehicle, service) Value chain coverage Recurring sales **Efficient production** Lean portfolio Software-defined · Lean portfolio with Revenue generation Instead of selling various software along entire value one-time vehicles or vehicles replace the traditional monolithic chain and especially services, new entrants upgrade possibilities from software (from Fewer chassis, body sell recurring **OEM lifecycle** charging infrastructure mobility services · Chassis and body and interior selection to mobility services) and subscription change less frequent possibilities while software is based products (package-based) updated much more quickly Ease of capital raise (e.g. through SPACs)

Selected key facts

- Overall profit expected to be generated from software in 2025¹⁾
- \$199
 Tesla's monthly subscription price for full self-driving capability²⁾
- 2024
 Year in which BEV will achieve production cost parity with ICE³⁾
- Average model variants in EU by new entrants vs. traditional OEMs⁴
- \$99bn
 Raised via automotive SPAC in 2020⁵⁾

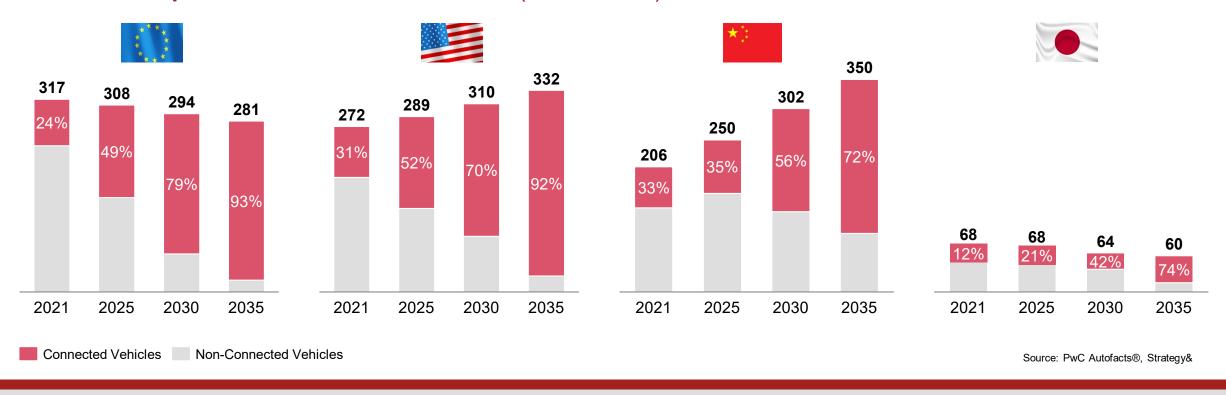
Acceleration of technology penetration will occur at varying times and speeds globally, as local mobility is transformed


Key considerations for anticipating tipping point of exponential technology adoption

	Technology	Consumer	Regulation	Economics	Expe	cted tipping po	oints
Connected	 Connected service content and UX Vehicle system/EE architecture Network infrastructure 	 "Digitally savvy" share of population "Freemium" segment services 	 Scope and timing of enforced connectivity requirements Scope of data sharing and privacy restrictions 	 Indirect value capture by OEM Effective end consumer pricing 	earlier	2030	later
Electric	 Battery and powertrain performance EV manufacturability and production capacity Charging infrastructure 	 Premium/early adopter segment size "Rational green" segment size 	 Emission target levels BEV/PHEV incentives Diesel/ICE bans/ restrictions in cities 	 Superior total cost of ownership (TCO) of BEV vs. ICE in relevant number of segments Additional revenues/ savings from V2G/V2X charging 	earlier	2030	later
Automated	 ADAS capability by use case Data processing Driver UI Network and traffic infrastructure 	 Premium/early adopter segment size Technology openness 	 Scope and timing of enforced ADAS safety features Geographic range and quantity of AV test drive/ vehicle approvals 	 Superior TCO vs. non-AV in first commercial cases Additional value capture from riders 	earlier	2030	later
Smart Mobility	Smartphone penetrationAccess and fleet availability	 Intermodal openness People/traffic density "Frequent user" segment size 	 Private car restrictions/ taxes Passenger transport regulation 	 Superior TCO vs. own vehicle Dynamic pricing for opt. use and availability 	earlier	2030	later

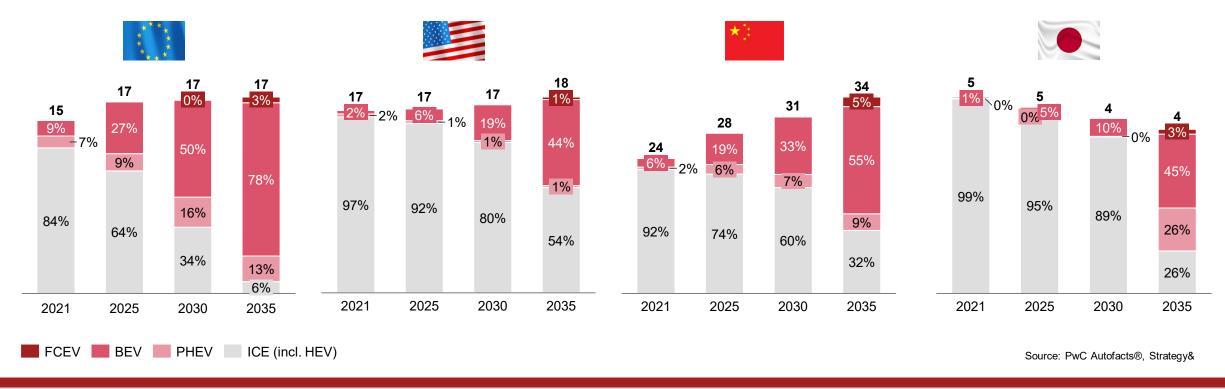
Strategy&

Total car parc growth strongest in China; electric forecast up from last year's prediction; automation notable only after 2025


Total vehicle parc and technology penetration of new car sales (in million, %)

LV = Light Vehicles = Cars + Light Commercial Vehicles < 6t GVW

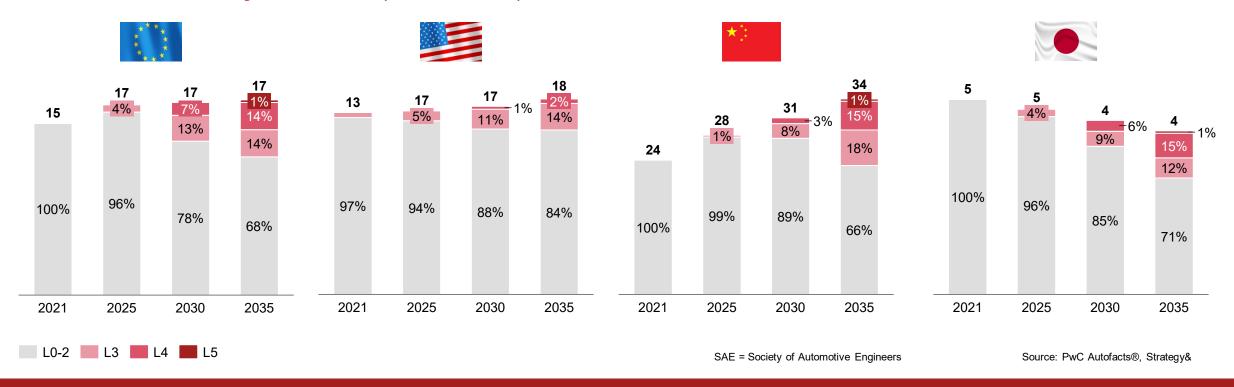
Every second vehicle on EU/US roads will be connected by 2025 – China/Japan follow five years later due to less regulatory pressure


Total vehicle parc and connected car share (in million, %)

As the number of connected cars increases, more OEMs will be able to offer over-the-air updates (OTA) and other features for greater consumer convenience, however security and data protection remain important concerns.

While BEV penetration in EU has accelerated vs. previous year expectations, China leads in total volume; Japan/US much slower

New vehicle sales by powertrain (in million, %)

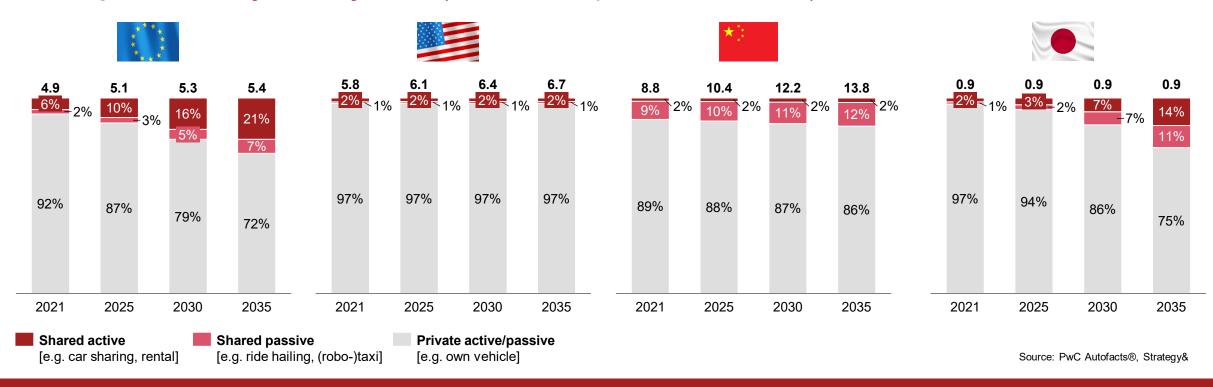


The recently announced EU Green Deal seeks a 100% reduction in CO₂ from 2035. Similar announcements from other countries are expected in the next few years. 99

Strategy&

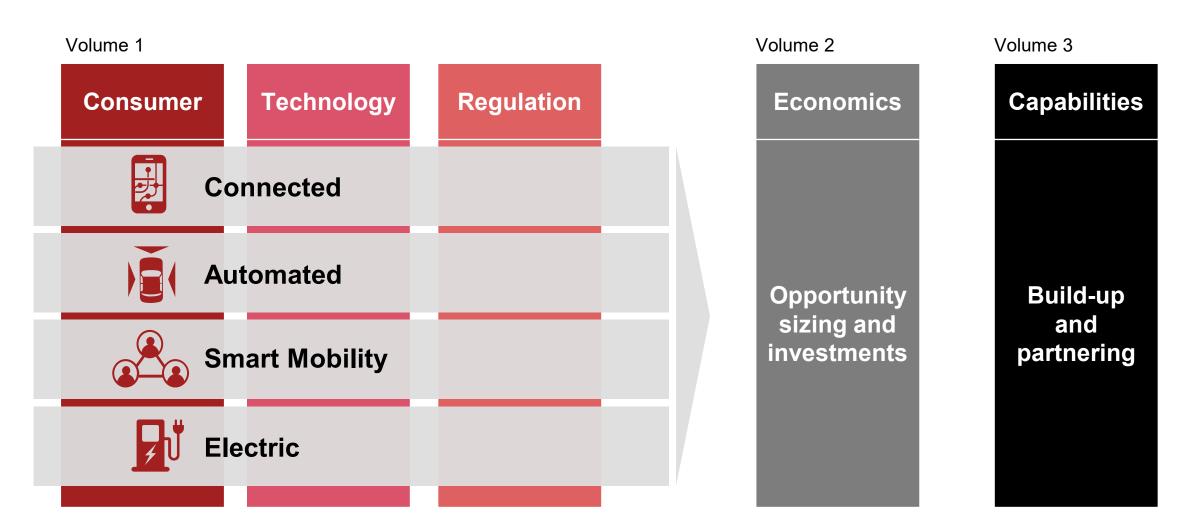
2021 has seen first deployments of L3 and L4 around the world, but relevant share of >20% expected only after 2030

New vehicle sales by SAE level (in million, %)



66 ADAS players will strive in the coming years for selected, feasible automated driving applications in transport/fleets and logistics/industrial areas to recover investments – Germany first to pass national law for automated vehicle use.

Strategy& 12

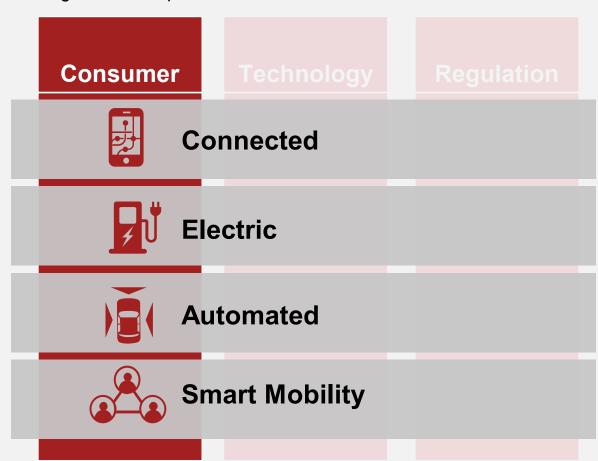

Preference towards shared mobility still varies across the major markets; EU/Japan expected to lead by 2035

Market penetration by mobility mode (in '000 trillion person-kilometer, %)

Obspite demand shock for shared mobility due to COVID-19 in 2020/21, long-term outlook remains positive — driven by a growing number of sharing options on multi-mode transport platforms and increasing regulatory pressure for private car ownership, in particular in European and Japanese cities.

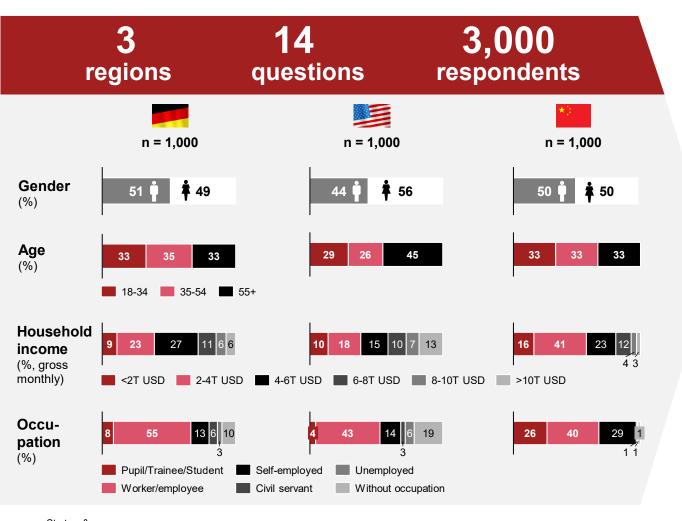
This report series is laid out in three volumes 1) CASE drivers, 2) economic opportunities, and 3) capability implications

Strategy&



Assessing global mobility market dynamics

Consumers are seeking convenient and safe mobility – private transport modes remain important in 2021"


Digital Auto Report 2021 - Volume 1

rrategy& Source: Strategy& 16

Latest consumer attitudes within CASE are reflected in a survey of 3,000 respondents in Germany, US and China

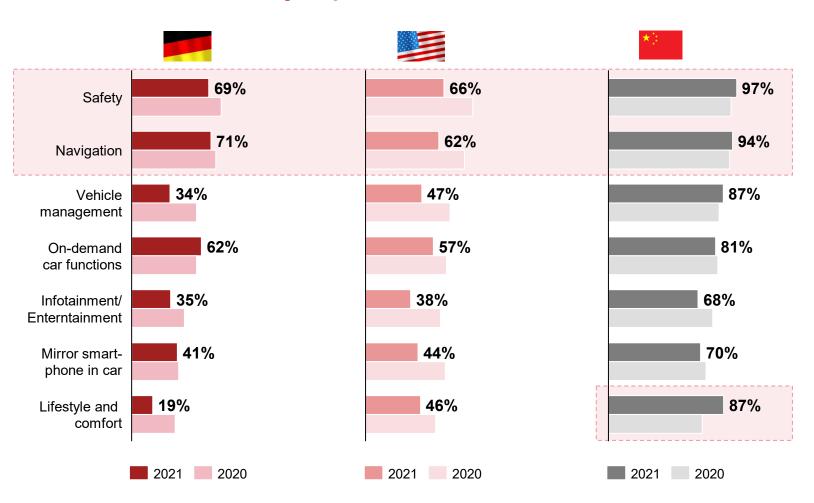
Overview consumer survey

Key results

- Order of preferences of connected services remains stable – safety and navigation still most important
- Willingness to pay for on-demand car functions much higher than for connected services

- PHEVs and BEVs are most preferred type of powertrain only in China while Hydrogen gains popularity in Germany
- Insufficient driving range and concerns about charging options put respondents off driving electric cars

- Respondents have not gained more trust in the use of automated cars – negative development compared to last year
- High willingness to pay for automated driving among those respondents who trust the technology



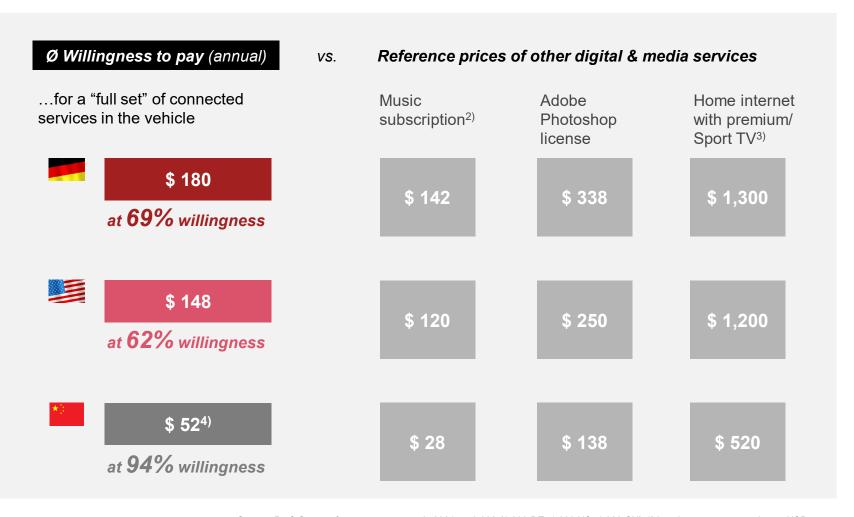
- Moderate intention to purchase a new or used car, subscription models gaining traction
- Even as immediate COVID-19 risk declines, using one's own car remains most popular while costumers are reluctant to use shared and public transport

Strategy& 17

Order of preferences for connected services remains stable – safety and navigation still most important

Connected services – By importance for consumers

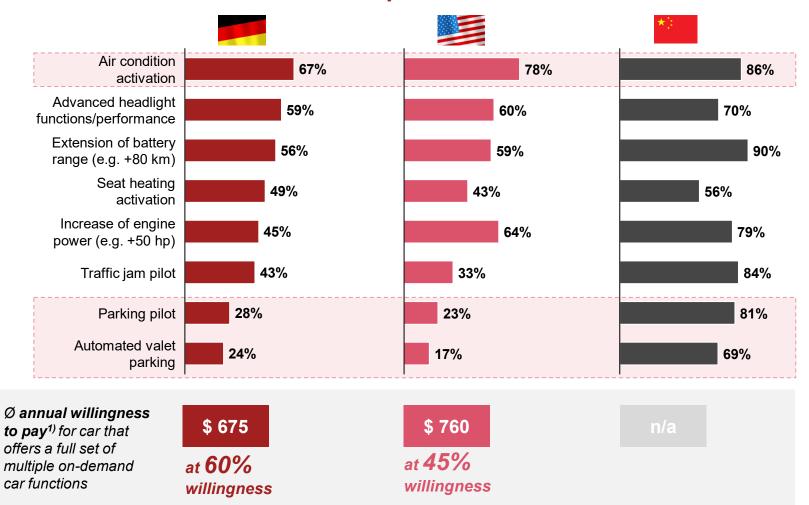
Question: "Which connected service categories are particularly important to you?"


Safety and navigation still most important feature for respondents across all regions.

With lifestyle and comfort features, OEMs mainly attract Chinese consumers."

More than 2 in 3 respondents are willing to pay for connected services; but respective amount varies greatly between regions

Connected services – Average willingness to pay1)

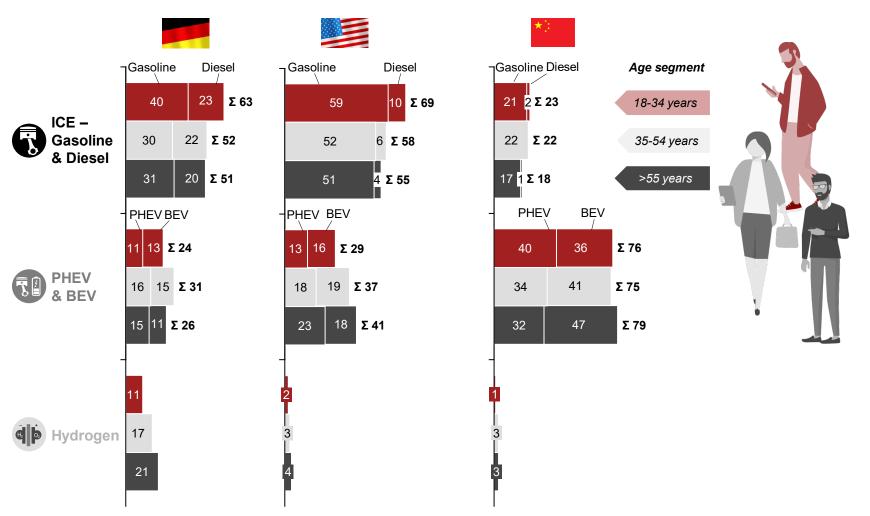


Acceptance of paying at all for connected car services has increased across regions

However, there are strong **differences** in perceived value among consumers – Chinese are willing to pay least for it, while consumers in US/Germany are prepared to pay a sum comparable to a music subscription."

With first on-demand functions becoming available, GER/US users rate air conditioning/headlights/engine power highest

On-demand car functions – Importance for consumers

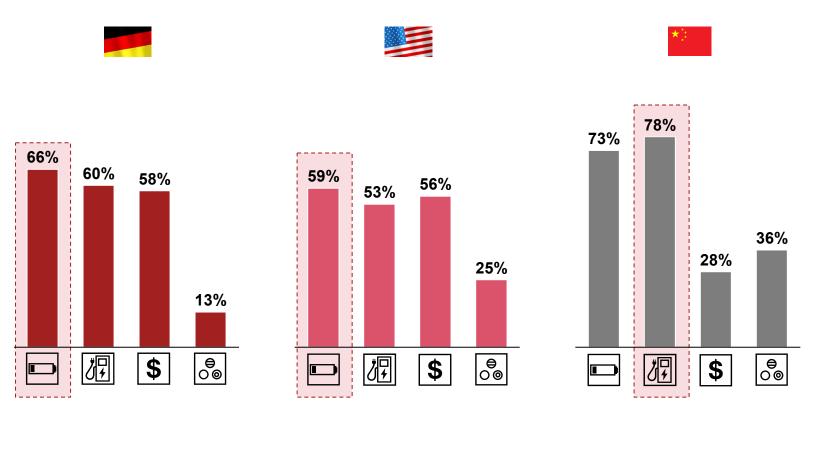

Question: "How important would be on-demand car function [...] to you?"

Particularly basic functions like air conditioner activation ranked most important, whereas sophisticated functions like parking pilot or automated valet parking do not yet seem very important – at least in Germany and the US."

>50% of US and Germany consumers retain strong preference for ICE – even young segments. Chinese clearly prefer PHEV/BEV

Preferred type of powertrain/engine by age (%)

Question: "Assuming you would buy, lease or subscribe to a passenger car, what type of engine would you like?"

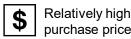

US consumers retain a strong preference for ICE (55-69%) followed by Germany (51-63%), while Chinese clearly prefer BEV/PHEV (75-79%).

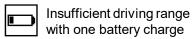
Despite the common image of being a climate-aware generation, **younger segments** in Germany and US have clear **preference for ICE**.

Hydrogen gains popularity in Germany – likely due to increasing press coverage and public debate."

Range anxiety and charging options are major obstacles to choosing an electric car – price is less of an issue, particularly in China

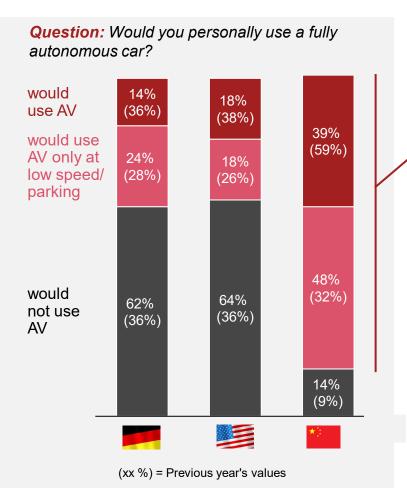
Deterring factors using an electric car

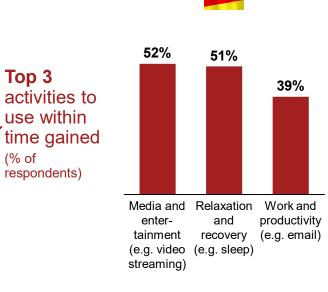


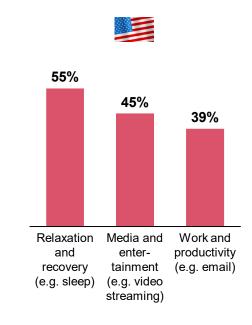

Question: "What is holding you back from choosing a car with an electric powertrain?"

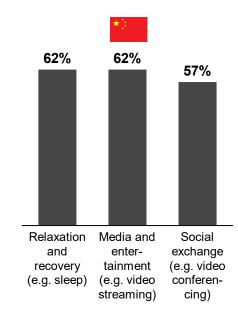


In Germany and the US, insufficient driving range with one battery charge is the biggest deterrent, whereas Chinese respondents raise concerns about whether there is sufficient charging network coverage."




Concerned about sufficient charging options/stations


Trust in automated cars is not growing – and has even declined in US and Germany from last year



Automated driving – Consumer attitudes and usage of time gained

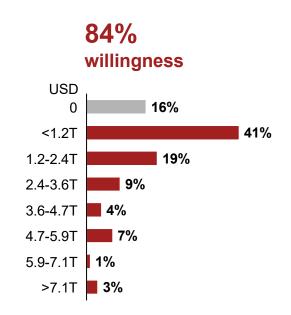
"

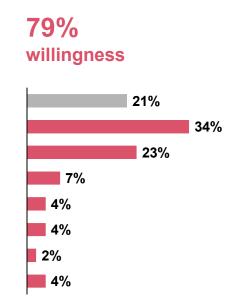
In general, willingness to use fully automated cars has declined, especially in Germany and the US. Trust in autonomous driving is seen as susceptible to change, and consumer attitudes might fluctuate rapidly as critical headlines emerge, e.g. following accidents and cybersecurity threats."

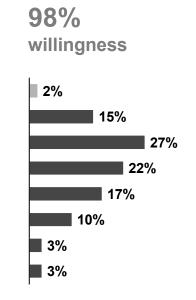
High willingness to pay for automated driving experience among respondents who would use a fully automated vehicle

Automated driving – Willingness to pay

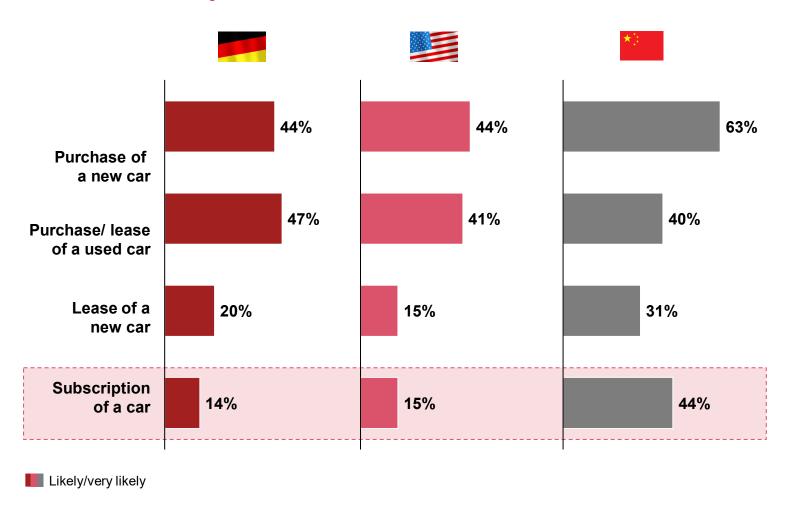
Question: "When using car sharing or ride hailing, what would be the extra price you would be ready to pay to get an autonomous car driving you around?"¹⁾







Question: "How much would you be ready to pay on top of the regular car price to have full autonomous car functionality?"



More than 40% of respondents want to purchase a new or used car in next 1-2 years; subscription models attracting more attention

Likelihood to buy/lease/subscribe to a car

Question: "How likely might you or your household purchase, lease, or subscribe to a passenger car in the next one to two years?"

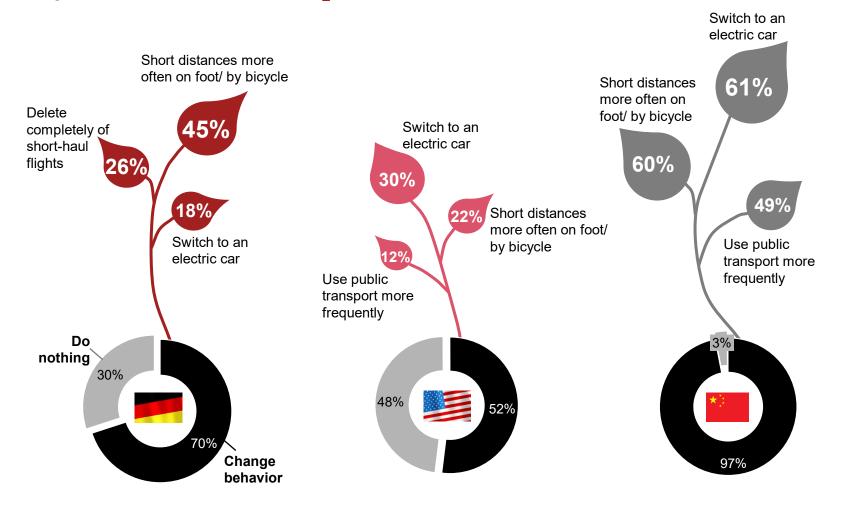
As the economic impact of COVID-19 appears to be more predictable in Germany, the **intention to get a car grew in that country** compared to last year's survey.

Subscription is gaining in popularity – in China, it is seen as more attractive than leasing; in US it is on a par with leasing, and in Germany its popularity is clearly growing (14% vs. 8% last year)."

Even as immediate COVID-19 risks decline, own car remain most popular as people shy away from shared and public transport

Mobility pattern after COVID-19 restrictions (%)

Question: "COVID-19 has temporarily changed our mobility behavior in many aspects. How do you plan to use modes [...] of transport once we have left the pandemic behind us?"



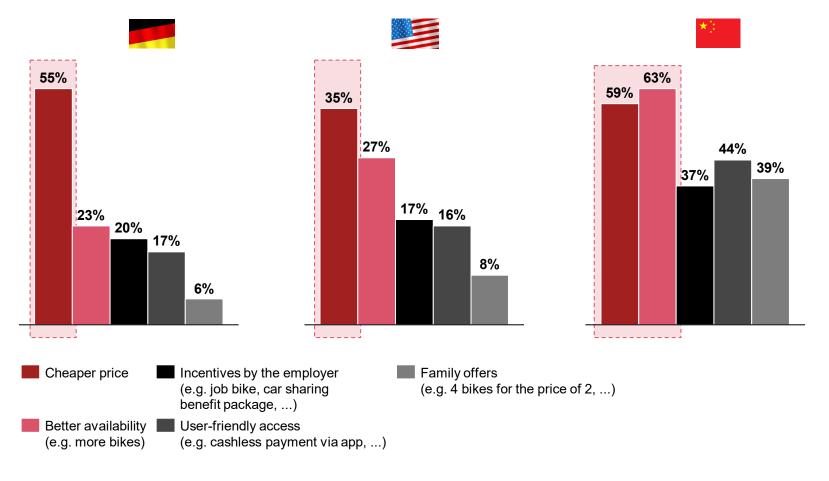
Own car is still seen as the safest and most convenient means of transportation – and therefore has the highest increase in demand, in particular in China.

Across all regions, consumers plan reduced use of **shared modes** as well as **taxi and ride-hailing – even after the pandemic.**"

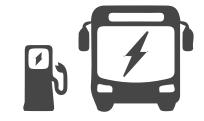
Respondents want to contribute to CO2 reduction – mainly by switching to an electric car or more walking/cycling (in Germany)

Top-3 contributions to CO₂ reduction

Question: "What major personal changes would you like to do to contribute to a reduction in CO₂ emissions?"



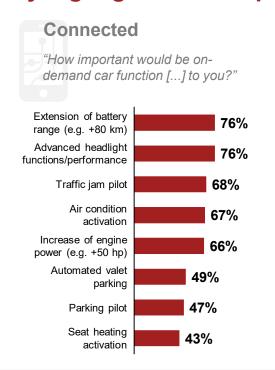
High willingness to **contribute** to $\mathbf{CO_2}$ reduction, esp. in **China** (97%) and in **Germany** (70%) whereas **US** respondents **are less willing** (52%).

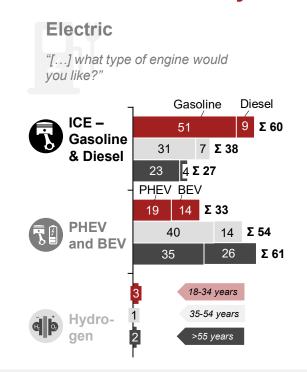

Main contributions will be short distances more often on foot/by bicycle, or switching to an electric car."

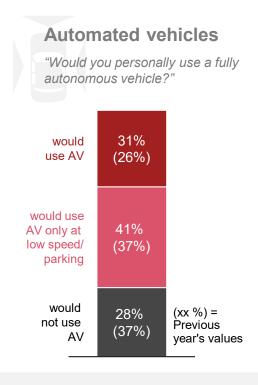
Price and availability are by far the top drivers for increasing the use of sustainable transport

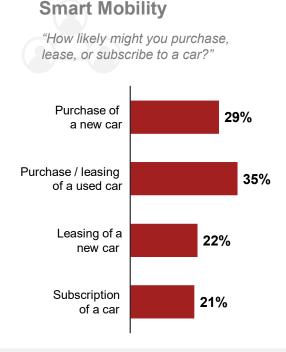
Factors encouraging sustainable transportation modes

Question: "What would encourage you to use sustainable transportation (e.g. bike sharing, car sharing, public transportation) more frequently?"




In **Germany** and the **US**, **cheaper prices** are most likely to encourage respondents to use sustainable transportation.


Chinese respondents, meanwhile, focus on better availability."

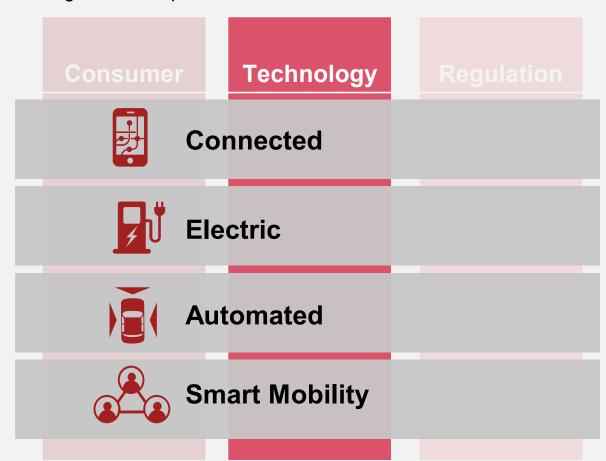

Contrast: Japanese consumers display varied preferences – skeptical towards BEV, but open to AV and car subscriptions

Key highlights from Japanese consumer survey

Different order of preferences of on-demand car functions in Japan from other countries – extension of battery range is rated most highly, along with advanced headlight functions/performance

Gasoline still most preferred type of engine among youngest respondents. However, esp. PHEV most popular among 35-54 and 55+ year old respondents

In contrast to other countries, positive development compared with previous year – Japanese respondents gaining trust in AVs


Lower intention to purchase/ lease new/used car than in other countries. However, subscription is gaining interest when compared to last year's survey (15%)

Technology progresses fast

– software-defined vehicle
architecture and chip
shortage most pressing
topic in 2021"

Digital Auto Report 2021 - Volume 1

Strategy&

Enabling connected services will become the make-or-break factor for OEMs in the coming years

Connected services

Data/Insights Services

Vehicle optimization

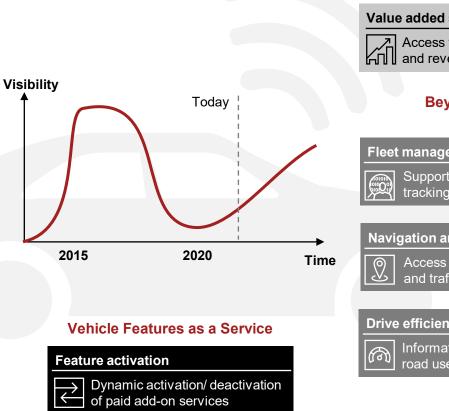
Cloud-supported vehicle analytics and optimization of configurations

Vehicle-Centric Connected Services

Automated driving

Cloud-supported situation analytics and driving assistance

Secure software update



Over-the-air update to elevate functionality and fix issues

Alarming and assistance

Automatic notification in case of severe accidents or vehicle issues

5th Screen Services

Value added services

Access to value-added services and revenues

Beyond Vehicle Services

Fleet management

Support of fleet management and tracking services

Navigation and traffic information

Access to up-to-date navigation and traffic information

Drive efficiency and safety

Information exchange between road users and infrastructure

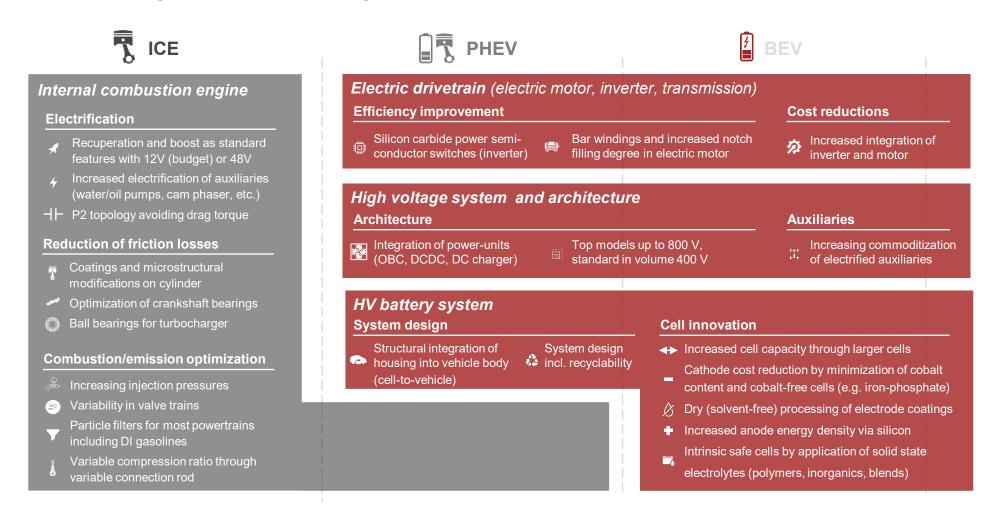
Still in its infancy

- · Connected car services have the potential to transform the driving experience and to unlock new revenues streams for OEMs
- · After initial hype, however, OEMs have lessened their focus on connected services. Available vehicle functionality is largely in its infancy
- · New entrants are likely to enter the automotive market and differentiate themselves with new cloud-based services and an ability to adapt vehicle software on demand
- First movers will set the standard for future connected car technology and revenue models
- Traditional OEMs need to reconsider strengthening their commitment so that they can transform their vehicle and cloud platforms swiftly, and provide the foundation and scale for future growth

31 Strategy&

For connected services, OEMs are currently rethinking their build vs. buy strategy on key technology components

Connected service components of a software-defined vehicle


	Enabler	Hardware	Software	Data / Integration	Content/Service	Sales and CRM	
			Plan – Build – Ship	o – Update – Sunset			
Key value blocks	Cloud infrastructure	Hardware and electronics architecture	Vehicle OS and Automotive cloud platform	Automotive Security and Compliance	Vehicle services and apps	Offering bundling and pricing	
	Communication technology (5G, V2x)	Integrated Circuits and Semiconductors	Vehicle OS and Automotive cloud platform	Data Analytics, Privacy and Ethics	Cloud/hybrid services incl. vehicle health services	User identification and personalization	
	Terrestrial and satellite communication networks	I/O devices (e.g., sensors, displays)	Secure Over-the-Air Update management	User interface and controls	3 rd party content and services	Customer support	
Current limitations	Regional regulationsCybersecurity concernsMNO costs	 Transformation of E/E architecture Semiconductor availability 	Software capabilitiesDevelopment processesCybersecurity regulations	System test capabilitiesDecision on closed vs. open systemsCertifications	Data ownershipRevenue models	Customer access/ identificationData privacy	
Current develop-ments	 Buy into cellular and satellite networks Build-up of cloud/edge infrastructures 	 Development of own/ tailored semiconductors Modular and expandable hardware 	Development of own software stacksBuild-up of own app stores	 Increase in automated test and compliance processes Build-up of own data/ 	Expansion of cross- industry and technology alliances	 Centralization of sales processes Cross financing/ subscription contracts 	

architectures

analytics platforms

Technology progress in e-mobility must be evaluated in the context of tech trends across various alternative powertrains

Alternative powertrain developments

Fuel cell system

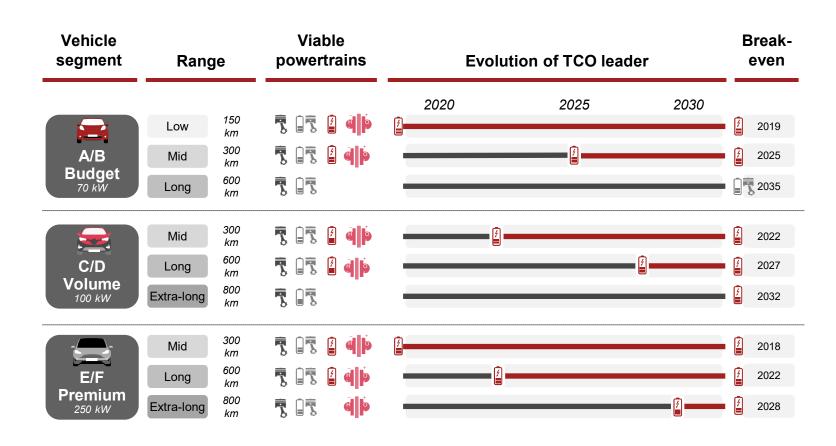
Stack

- Increase of power density
- compositions (reduction of Pt) and nano-scale microstructure
- Optimization of bipolar plate coatings

Balance of plants

Stack internal humidification and simplified water mgmt.

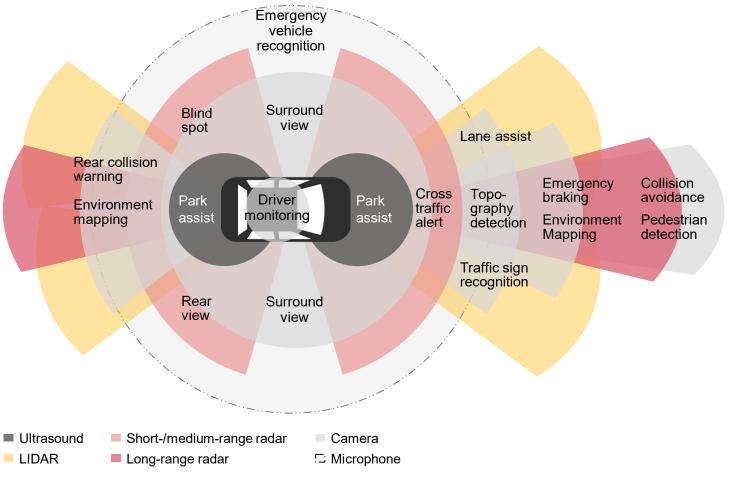
Tank


- Optimization of fiber winding layout and process
- Mixed materials to reduce costs
- Compressed H₂ as standard for passenger vehicles

Strategy& Source: Strategy& 33

By the end of the decade, BEVs will be the most economic powertrain solution for almost all segments

Electric powertrain operating cost break-even timeline (vs. ICE)



There is **no fixed point** in time **when battery electric vehicles will**offer an operating **cost advantage over internal combustion engines** – it depends on factors such as the vehicle segment and range"

Hardware, software and infrastructure of automated driving are improving, but still not reached level necessary for scaling up

Automated driving technology developments

Current status and limitations

- Existing radar and camera technology will be improved to achieve better resolution. LiDAR technology has still not reached the cost point
- The appropriate sensor setting for future Level 3/4 vehicles has not yet been finally defined.
 Ongoing discussions between camera-only solution and other solutions
- New ADAS computers based on low power tech are under development
- Different driver assistant systems mandatory beginning 2022 in EU

Hardware

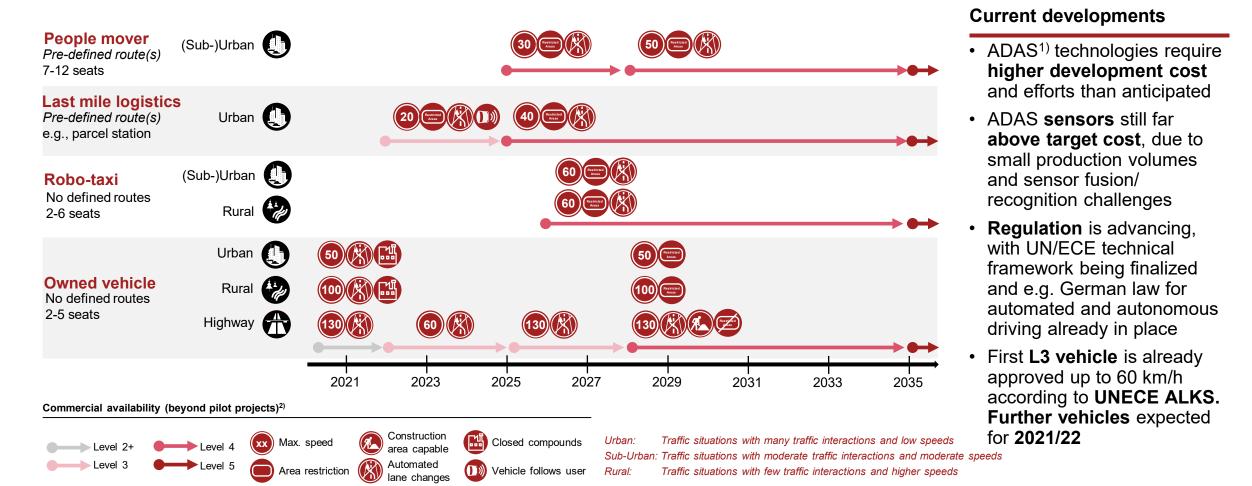
e.g. sensors

- Test and validation not yet mature
- Motion prediction still not completely solved
- Very large amounts of test data complicate traditional analytics

- So far, there are only a few test tracks that are fully developed for automated driving
- **Expansion of 4G** by 2022 for motorways in GER as basis for 5G
- For the time being **only pseudo 5G** based on 4G (non stand-alone)

Strategy& Source: Strategy& 35

Once reaching maturity at L3 with broad use case deployment, rapid breakthrough of L4 technologies expected soon after


Automated driving SAE levels and AD function mapping

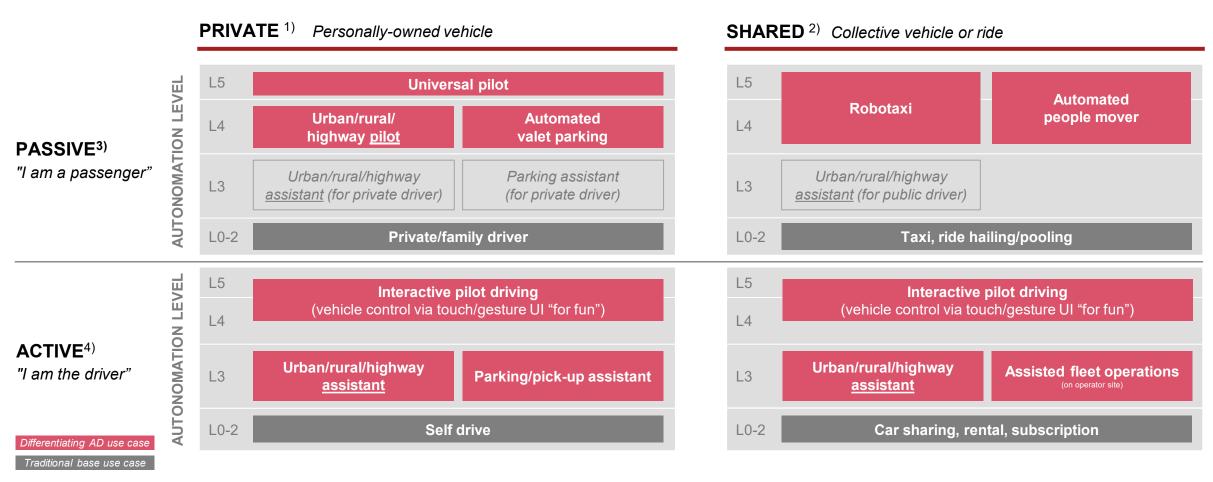
	SAE level N		Narrative definition		Vehicle control	Environment monitoring and user interface	Fallback for dynamic driving task	System capability	Exemplary AD functionalities
нідн	5	Full driving automation	The system performs all aspects of dynamic driving (driving-mode specific)	under all environmental and road conditions that can be managed by a human driver (not ODD specific	System ((c) C) Human and System	System (((p))) (2) Alternative or conventional user interface	((îo System	All driving modes	 Universal pilot (full autonomy) Interactive pilot driving (control via touch/gesture UI) Robo-taxi and automated people-mover (all conditions)
	4	High driving automation		even if a human driver does not respond appropriately to a request to intervene (ODD specific)				Most driving modes	 Urban/rural/highway <u>pilot</u> with multi-lane change Robo-taxi and automated people-mover Urban last-mile delivery Automated valet parking
	3	Conditional driving automation		expecting the human driver to respond appropriately to an intervention request (ODD specific)			⇔ Human	Some driving modes	 Urban/rural/highway <u>assistant</u> (e.g. hands-off traffic jam, intersection movement, single lane change) Parking chauffeur Assisted fleet operations (on-site, off-highway)
AUTOMATION	Driving		The human driver performs remaining aspects of dynamic driving, while the system	executes both steering and acceleration/deceleration (driving-mode specific and depending on ODD)		⊖ ڪ⊘ Human			Adaptive cruise controlRemote/key parking assistantLane change assistant
	1	Driver assistance		executes either steering or acceleration/deceleration (driving-mode specific and depending on ODD)		Conventional user interface			 Adaptive cruise control Driver assisted parking assistant Lane keeping assistant (system steers) Blind spot monitoring rear/side (system steers)
LOW	0	No driving automation	The human driver performs all aspects of dynamic driving, potentially "enhanced" by warning or intervention systems		∠ ⊝ Human			n/a	 Pre-/forward- collision braking Front/rear cross-traffic alert with braking

Strategy&

Commercially viable automated driving applications at L3 and beyond will start becoming available for specific use cases first

Automated driving timeline of commercial road availability

Source: Strategy&


¹⁾ ADAS = Advanced Driver Assistance Systems

²⁾ Indicating start of availability. Tipping points of significant adoption expected significantly later in certain fields

Individual mobility divides into four modes of private vs. shared and active vs. passive driving, each with increasing automation

Private/shared mobility modes with selected automated driving use cases

Source: PwC AutoFacts®, Strategy&

¹⁾ Includes self-owned, family-owned, credit-financed, long-term leased, personal company car 2) Includes rental, subscription (up to 1 year), ride-hailing, ride-sharing, car sharing, pool car, car club

^{3) &}quot;Passenger" determines mobility purpose / destination and selects means of transport with certain expected time of arrival; "mobility system" determines detailed routing and actual time/place of arrival 4) "Driver" determines mobility purpose / target and selects means of transport with certain arrival time; "driver" determines detailed routing and actual time / place of arrival through User Interface (UI)

Car sharing/subscription platforms rely on micro-mobility technology stacks when migrating towards electric car fleets

Smart mobility technology platform building blocks – Example of e-vehicle fleet provider

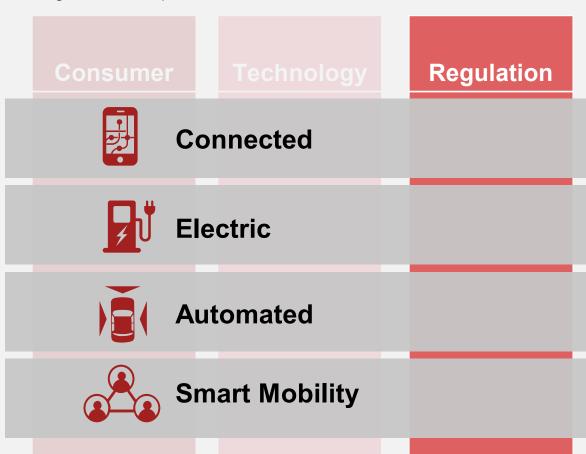
risk and legal, HR, ..

Key benefits Technical platform capabilities Partner integration (API) and Intuitive digital User interface and apps user experience (drivers, fleet operators, partners) **Customer operations** Easy electric Incident **Onboarding** Charging and (identity, access, ...) vehicle access maintenance management Calculation and contracting Billing and payment **Asset and fleet management** High vehicle Vehicle condition Asset lifecycle external data sourcing availability Maintenance and monitoring/telematics repair management management Charging and battery management Reliable & **Energy demand Battery replacement** fast charging Charge point prediction and recycling management **Internal Business Operations** Efficient business operations Customer acquisition/ Finance and controlling, IT mgmt (IoT, data and

marketing

Current developments

- Providing a seamless electric vehicle sharing/subscription experience, requires a holistic technology architecture and IT platform approach covering functionalities on five levels
- The IT platforms need to address very different performance requirements (e.g. operating telematics/fleet monitoring vs. managing back-end billing processes)
- To enable fast scale-up in multiple cities, API/open standards/interfaces are key to swift onboarding of external partners and adoption of local (regulatory) requirements
- Cloud-based systems ensure high reliability/scale-up flexibility, while supporting efficient process execution


Strategy& Source: Strategy& 39

analytics, cyber, ..)

Regulation is aiming to accelerate the mobility transformation — but various regions have followed very different approaches"

Digital Auto Report 2021 - Volume 1

rategy& Source: Strategy& 40

China and EU leads regulatory discussions on CASE trends – EV penetration and AV enablement are leading focus areas

Latest regulatory initiatives and discussions (excerpt)

å AUTOMATED U.S. Department of Transportation released Automated Vehicles Comprehensive Plan laying out **strategy for safe integration of Automated Driving Systems** (01/2021)

AUTOMATED NHTSA issued a Standing General Order to report crashes of L2-L5 vehicles to identify safety issues emerging from automated vehicles (06/2021)

■ ELECTRIC Several measures from Biden administration to accelerate deployment of EV charging infrastructure (04/2021)

Lagging behind other regions; New impulses from Biden administration particularly for EVs expected

Source: Strategy&

AUTOMATED Germany is first country to pass regulation for completely driverless vehicles allowing commercial deployment of L4 AV use-cases with focus on MaaS (05/2021)

AUTOMATED France to allow future use of vehicles controlled by automated driving systems on predefined routes or zones starting from 09/2022 (07/2021)

№ ELECTRIC EC adopted a package under **European Green Deal** incl. CO₂ emission standards¹⁾ (07/2021)

■ ELECTRIC EC promoting deployment of alternative fuels infrastructure with directive revision and Strategic Rollout Action Plan

EU states with a siloed / bottom-up approach towards CASE regulation

AUTOMATED Draft to amend Road Traffic Safety Law clarifying requirements for AV road testing and regulating liabilities for traffic violations and accidents (03/2021)

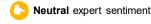
AUTOMATED Guide for Admission of Intelligent and Connected Vehicle Manufacturers and Products drafted regulation of safety requirements for AV manufacturers (04/2021)

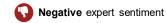
software updates as well as their respective management systems enacted by UNECE (01/2021)

AUTOMATED UNECE establishing uniform provisions concerning approval of vehicles with regard to Automated Lane Keeping Systems (ALKS) (03/2021)

Release of new ISO 22737 defining minimum requirements & test procedures for low-speed autonomous driving (LSAD) systems (designed to operate L4 automation) (07/2021)

Recently introduced **regulations** at UN level with **positive impact** on **CASE adoption**, further **steps required**


■ ELECTRIC New Energy Vehicle Industrial Development Plan for 2021 to 2035 with 5 strategic tasks released²⁾ (10/2020)


Regulations on Recall of Motor Vehicle Emissions extending original safety recalls to emission recalls (07/2021)

Top-down approach based on long-term strategy with positive impact on CASE

Positive expert sentiment

Note: (1) average emissions of new cars to come down by 55% from 2030 and 100% from 2035 compared to 2021 levels (2) 1: improve capacity for technology innovation; 2: build an NEV industry ecosystem; 3: advance industrial integration and development; 4: build a sound infrastructure system; and 5: increase openness and deepen international cooperation

AV = Automated vehicle; EC = European Commission; NCAP = New Car Assessment Program; NHTSA = National Highway Traffic Safety Administration; UNECE = United Nations Economic Commission for Europe

Developing capabilities to comply with data regulation is vital if OEMs are to exploit CASE opportunities fully

Major data regulations (excerpt)

Objective

Strengthen data sharing mechanisms

Trade secret protection act Define and protect trade secrets

Digital markets act

Regulate gatekeeper platforms

Digital services act

Regulate online intermediaries and platforms

GDPR

Ensure data protection and privacy

Further regulations accelerating data sharing

Facilitate data sharing among public and private bodies

Framework for data sharing/ usage under ultimate premise of protecting customers privacy and data rights

Objective

Federal Domain and sector privacy specific regulations for privacy protection

to public

State-level Grant rights for data privacy privacy protection laws

laws

Federal gov data publication laws

Protection

Governs privacy and disclosure of personal information

Make government-held

information accessible

Heterogeneous regulation across states, balancing privacy concerns and adoption of new technologies

Objective

Civil code

Specify right of privacy of natural persons

China cybersecurity law

Protect data e.g. by storage of personal and important data within the PRC

Provisions on management of automotive data security

Regulate handling of personal and important data in automotive

Multiple national standards

Foster measures to protect data and prevent unauthorized access and abuse

Increasing complexity and requirements to meet privacy requirements as well as national interests

→ need for China-specific data solutions

Strategy& 42

Network contacts

Jörg Krings joerg.krings@ strategyand.de.pwc.com

Automotive Europe

Andreas Gissler andreas.gissler@

strategyand.de.pwc.com

Digital Transformation

Jonas Seyfferth

jonas.seyfferth@ strategyand.de.pwc.com

Connected & Smart Mobility

Hartmut Güthner

hartmut.guethner@ strategyand.de.pwc.com

Automated Driving

Jörn Neuhausen

joern.neuhausen@ strategyand.de.pwc.com

Alternative Powertrains

Claus Gruber

claus.gruber@ strategyand.de.pwc.com

Software Development

Akshay Singh

akshay.singh@ pwc.com

Automotive US

Kentaro Abe

kentaro.abe@ pwc.com

Automotive Japan

Contributors

Felix Andre

Kunal Arora

Steven van Arsdale

Thilo Bühnen

Christoph Faller

Andrew Higashi

Steffen Hoppe

Sebastian Jursch

Tobias Killmeier

Felix Kuhnert

Anil Khurana
Patrick Lill
Nicola Schudnagies

© 2021 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details. Mentions of Strategy& refer to the global team of practical strategists that is integrated within the PwC network of firms. For more about Strategy&, see www.strategyand.pwc.com. No reproduction is permitted in whole or part without written permission of PwC. Disclaimer: This content is for general purposes only, and should not be used as a substitute for consultation with professional advisors.

Contacts – China

Jun Jin
PwC China Automotive
Leader
jun.jin@
strategyand.cn.pwc.com

Huchu Xu
Partner
huchu.xu@
strategyand.cn.pwc.com

Steven Jiang
Leader of China
Experience Center
steven.jiang@
strategyand.cn.pwc.com

Frank Liu
Director
frank.xb.liu@
strategyand.cn.pwc.com

Elina Lu
Director
elina.m.lu@
strategyand.cn.pwc.com

Lingzhi Yang Senior Manager lingzhi.yang@ strategyand.cn.pwc.com

Tina Liu
Senior Manager
tina.tt.liu@
strategyand.cn.pwc.com

© 2021 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details. Mentions of Strategy& refer to the global team of practical strategists that is integrated within the PwC network of firms. For more about Strategy&, see www.strategyand.pwc.com. No reproduction is permitted in whole or part without written permission of PwC. Disclaimer: This content is for general purposes only, and should not be used as a substitute for consultation with professional advisors.