

Staying profitable in the new era of electrification

Powertrain study 2020

Staying profitable in the new powertrain age Management summary

- The electrification trend is accelerating and is unstoppable, driven by legislation and popular sentiment.
 To achieve European CO₂ fleet targets, an electrified vehicle ("xEV") share 35% to 45% will be required in 2030
- 2. As **OEMs struggle** with **on-costs** for **xEVs**, **profitability** and **contributions margins are under threat**. This is due to the new roll-out of xEVs to the volume segment, and the economic downturn caused by COVID-19
- 3. For the next decade electric powertrain technology will maintain its pace of development
- 4. Batteries are the largest cost driver of electric powertrains costs will fall further, yet this fundamental point will still apply
- 5. The often discussed turning point when BEVs become more economic than ICEs is not a discrete point in time. It depends largely on vehicle segment, power, and range (battery size). BEVs will become economic for several segments, but extended ranges (600 km+) will not be viable with BEVs
- 6. Based on the **customer value proposition for powertrains**, **variants** should be **reduced to enabled focused** development capacities, while **core competencies need** to be **revised**
- 7. Given that **profitability is precarious** (due to COVID-19) but **xEV sales are growing**, **OEMs** need to **focus on cost-optimized powertrain** platforms and a **customer-oriented** powertrain **portfolio** to improve margins and profitability

Why electric mobility puts WAY automotive profitability under pressure

xEV sales in China has slowed down – Europe has become the main growth market

Current sales figures and trends for BEV and PHEV (thousand units per year)

+98% 1.024 445 518 324 207 152 172 310 2018 2019 2020F

USA

- Nation is divided by states following CARB¹) regulation (e.g. CA, MA, OR, ME) and others
- Government support measures for BEV (e.g. tax credit) limited by total sales per OEM
- No governmental charging infrastructure support package; efforts mostly driven by OEMs
- City bans are not relevant and are not expected to become so until 2030

EU-28

- Stricter CO₂ fleet targets recently enacted
- BEVs and PHEVs are necessary to comply with target and avoid penalties
- COVID-19: Government support measures
 with strong focus on BEVs and PHEVs
- First city bans for combustion engines announced for 2030 (e.g. Amsterdam)

China

- As response to COVID-19, financial subsidies for NEV²) extended until the end of 2022
- In the next 3 years, gradually increase of the mandated production quota for NEV. Fines for non-compliance for manufacturers
- Quotas on license plate removed for NEV and somewhat relaxed for ICE (e.g. in Hangzhou)

In order to achieve the 2030 fleet targets, an electrified vehicle share of ca. 35% to 45% xEV (BEV, PHEV) is required

Effect of xEV on fleet emissions^{1,2)}

Legislative trends – CO₂ fleet targets and xEV effect

International CO₂ fleet targets

As for volume manufacturers (>300 thousand units p.a.)
 Super credits not shown, due to discontinuation after 2022
 Additional weight of BEV taken into account
 Based on WLTP utility factor
 Sources: https://theicct.org/chart-library-passenger-vehicle-fuel-economy, Strategy& analysis

Electrified vehicles (xEV) come with higher product costs – ca. 3500 $\mathbb C$... 10000 $\mathbb C$ vs. an ICE

On-costs of alternative powertrains (€ thousand, 2020)

Due to increased product costs with limited price potential, contribution margins are decreasing and profitability is under threat Electrified vehicle profitability

How powertrain technology and costs evolve

The battery cells comprise most of the BEV powertrain costs – a closer look at its value chain is imperative

Enable value chain optimization: Significance of battery and cell costs for BEV

Automotive battery value chain and value share

Typical cost breakdown BEV powertrain

Depending on realization of optimization we see a decline from 90 to 68 €/kWh for large automotive battery cells

Battery cell prices and optimization

Cell price breakdown (2020)

Cell prices and selected optimization measures till 2030 (€/kWh)

As a result of cost reductions for new technologies, we expect on-costs to reduce to ca. 1500 to 3000 € in 2030

On-costs of alternative powertrains (€ thousand, 2020...2030)

Powertrain product

Product costs only based material and assembly costs, excluding research & development (R&D), sales, general & administrative (SG&A) cost

11

BEVs will become economic for several segments – but extended ranges (600 km+) will not be viable with BEVs

Economics of selected vehicle/powertrain combinations

Paramete	ers		Most economical solution			
Vehicle segment	Range	Viable powertrains	Evo	olution of TCO lea	der	Break- even
			2020	2025	2030	
A/B Budget ^{70 kW}	Low 150 km	▝▋ ▋▝▋ ▌₽				2019
	Mid 300 km	🕏 🗐 🖥 🗐 🗖				2027
	Long 600 km	5 8				2040
C/D Volume	Mid 300 km	7 8 1 8 4				2024
	Long 600 km	3 83 🛿 🕸				2035
	Extra-long 800 km	5 8				2038
E/F Premium ^{250 kW}	Mid 300 km	7 7 4				2018
	Long 600 km	3 G3 🕯 🏟				2024
	Extra-long 800 km	₹ Q₹ d			- H	0 2028

Key findings

- The often described "turning point" when BEVs become more economic than ICEs is not a discrete point in time

 it depends largely on vehicle segment, power, and range (battery size)
- Economics of BEV compared to ICE is promoted by two main parameters
 - Low range requirements and small batteries, explaining favorable BEV TCO for A/B low range segment
 - Moderate on-costs for high power electric drives, explaining favorable BEV TCO in premium segment
- Real long-range capability of BEVs is technically limited, only PHEV and FCEV are alternatives for real-life long-range

How to reshape powertrain portfolio and core capabilities The specific powertrain features should be shaped along the customer value proposition within the vehicle portfolio

Dominant powertrains and archetypes 2030

Dominant powertrain types

powertrain features

Powertrain archetypes

Development focus should be based on the future expectation of relevant powertrain features

Powertrain features and development focus

Mainstream powertrain configurations

powertrain features

Implications on component strategy

- Top-dynamic powertrains offered mainly as BEV/ PHEV
- Further ICE downsizing, >4 cylinders only for niches
- Diesel only in 4-cylinder 150...200 kW segment
- Increase of electric power, decrease of ICE power/dynamics, minim complex transmission
- 3-4 cylinder engines, mainly gasoline
- Manifold injection and non-turbocharged engines at lower power end
- Scalable **battery** system architecture with high degree of commonality on cell/module level
- Power scaling up to ca. 150 kW..200 kW on single axle, above mainly via 2nd axle (4WD)
- Sustainable full product lifecycle (cradle-to-grave)
- Distinctive high range required, well above BEV, i.e. >5 kg H₂
- "Plug-in" with grid rechargeable battery for flexibility and low-cost home/workplace charging

Operating costs

FC operated mainly as "range extender"

Reduce variants and revise core competencies for **powertrains** and subcomponents

Recommendation

15

Implications and recommendations

Electric vehicle sales boosted by legislation in China and EU

Electric vehicles (total new vehicle sales – US, EU, CHINA; in millions)

- About 1.4 million new electric car registrations in 2030
- Penetration of electric lower than other regions due to relatively low cost of existing ICE alternatives
- Municipal and state-level privileges support local market dynamics
- Domestic charging infrastructure widespread only after 2030

- About 6 million new electric car registrations in 2030
- Sufficient domestic/commercial/public charging infrastructure from 2025 onwards
- Strong legislative push from 2020 onwards
- Ongoing cost reductions and improved customer acceptance of BEVs expected to boost demand further after 2025

- About 10 million new electric car registrations in 2030
- Sufficient public charging infrastructure from 2022 in priority cities and main travel routes

PHFV

 Consumer demand for electric vehicles growing from sub-car segments to all segments

Rest ICE

Cost increases induced by powertrain technology shift threaten margins and profitability in the next decade

Next decade revenue and cost projection

OEM margin projection

Implications

Baseline scenario:

- OEM costs are increased by electrified vehicles, while price increases are limited and add-on costs aren't fully covered
- Critical situation for most traditional market
 players is expected after 2024/25, when xEV sales
 become more significant

Optimized scenario avoid critical situation is

- Reduce product costs for next powertrain platforms
- Reshape portfolio to optimize customer perceived value and increase willingness to pay for alternative powertrains

18

We would be happy to discuss our study with you

Dr. Jörn Neuhausen Director Electric Drives

joern.neuhausen@strategyand.de.pwc.com

felix.andre@strategyand.de.pwc.com

Jörg Assmann Automotive Partner

joerg.assmann@strategyand.de.pwc.com

Christoph Stürmer Global Lead Analyst

christoph.stuermer@pwc.com

China contacts

Jun Jin China Automotive Industry Leader

jun.jin@cn.pwc.com

Steven Jiang China Automotive Industry Partner

steven.jiang@strategyand.cn.pwc.com

Thank you

strategyand.pwc.com

© 2020 PwC. All rights reserved.

PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see pwc.com/structure for further details. **Disclaimer:** This content is general information purposes only, and should not be used as a substitute for consultation with professional advisors.